Irreducible finite-dimensional representations of equivariant map algebras

Erhard Neher

University of Ottawa

December 2009

Joint work with Alistair Savage and Prasad Senesi

Slides: www.mathstat.uottawa.ca/~neher

Full details: arXiv:0906.5189

Outline

Goal: Classify the irreducible finite-dimensional representations of a new class of Lie algebras.

Overview:

- Equivariant map algebras
- 2 Evaluation maps
- Irreducible finite-dimensional representations
- Applications/Examples
 - recover some known classifications
 - produce some new classifications

Notation

- k algebraically closed field of characteristic 0
- A commutative associative k-algebra, finitely generated and without nilpotents
- X associated affine algebraic variety $(A = \mathcal{O}_X(X))$
- \mathfrak{g} finite-dimensional (Lie) algebra over k
- Γ finite group acting on A by automorphisms of A (↔ acting on X by automorphisms of X) and on g by automorphisms of g

(Generalizations:

- A commutative associative k-algebra
- X associated affine scheme, or vice versa
- replace $x \in X$ by "k-rational points")

Untwisted Map algebras

Recall X affine algebraic variety, A coordinate ring, \mathfrak{g} (Lie) algebra

Definition $M(X, \mathfrak{g}) = \mathfrak{g} \otimes A \cong \{ \alpha : X \to \mathfrak{g} : \alpha \text{ regular map} \}$ (Lie) algebra : $[u \otimes a, v \otimes b] = [u, v]_{\mathfrak{g}} \otimes ab \qquad (u, v \in \mathfrak{g}, a, b \in A)$ $[\alpha, \beta](x) = [\alpha(x), \beta(x)]_{\mathfrak{g}} \qquad (\alpha, \beta : X \to \mathfrak{g}, x \in X)$

くほと くほと くほと

Recall $M(X, \mathfrak{g}) = \mathfrak{g} \otimes A = \{ \alpha : X \to \mathfrak{g} : \alpha \text{ regular} \}$

Examples:

•
$$A = k[t_1^{\pm 1}, \dots, t_n^{\pm 1}], X = (k^{\times})^n, k^{\times} = k \setminus \{0\}$$

 $n = 1: M(X, \mathfrak{g}) \text{ loop algebra}$

•
$$A = k[t_1, ..., t_n], X = k^n,$$

 $M(X, g)$ current algebra

•
$$A = k \times \cdots \times k$$
 (*n* factors), $X = \{x_1, \dots, x_n\}$,
 $M(X, \mathfrak{g}) \cong \mathfrak{g} \oplus \cdots \oplus \mathfrak{g} = \mathfrak{g}^{\oplus n}$ (*n* terms)

・ロン ・四 ・ ・ ヨン ・ ヨン

Equivariant map algebras (EMAs)

 Γ finite group, $A \curvearrowleft \Gamma \curvearrowright \mathfrak{g}$, hence $\Gamma \curvearrowright M(X, \mathfrak{g}) = \mathfrak{g} \otimes A =$ regular maps $X \rightarrow \mathfrak{g}$:

$$\gamma \cdot (u \otimes a) = (\gamma \cdot u) \otimes (\gamma \cdot a)$$
, or $(\gamma \cdot \alpha)(x) = \gamma \cdot \alpha(\gamma^{-1} \cdot x)$

Definition (equivariant map algebras)

$$M(X,\mathfrak{g})^{\mathsf{\Gamma}} = (\mathfrak{g} \otimes A)^{\mathsf{\Gamma}}$$

= {\alpha : X \rightarrow \mathcal{g} : \alpha regular, \alpha(\gamma \cdot x) = \gamma \cdot \alpha(x) \forall \gamma \in \mathbf{\Gamma}, x \in X \}

 $M(X,\mathfrak{g})^{\Gamma} < M(X,\mathfrak{g})$ Note: $(\mathfrak{g} \otimes A)^{\Gamma} \supset \mathfrak{g}^{\Gamma} \otimes A^{\Gamma}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Examples: Trivial **F**-actions

- Γ acts trivially on A, i.e., on X: M(X, g)^Γ = M(X, g^Γ) (untwisted EMA)
- Γ acts trivially on \mathfrak{g} : $M(X,\mathfrak{g})^{\Gamma} = \mathfrak{g} \otimes A^{\Gamma} = M(X//\Gamma,\mathfrak{g})$ $X//\Gamma = \operatorname{Spec}(A^{\Gamma})$ geometric quotient

Example: Multiloop algebras

$$\Gamma =$$
abelian, $X = (k^{\times})^n$, $\mathfrak{g} =$ any algebra

$$\Gamma \text{ abelian: } \Gamma = \mathbb{Z}/m_1\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/m_n\mathbb{Z} \ni \bar{p} = (\bar{p}_1, \dots, \bar{p}_n)$$

 $A = k[t_1^{\pm 1}, \dots, t_n^{\pm 1}]$, Γ -action: $\bar{p} \cdot t_i = \zeta_i^{-p_i} t_i$, ζ_i primitive m_i th root of 1,

$$X = (k^{\times})^n, \text{ Γ-action: $\bar{p} \cdot (x_1, \ldots, x_n) = (\zeta_1^{p_1} x_1, \ldots, \zeta_n^{p_n} x_n),$}$$

 Γ action on $\mathfrak{g} \leftrightarrow \sigma_1, \ldots, \sigma_n \in \operatorname{Aut}(\mathfrak{g})$, $\sigma_i \sigma_j = \sigma_j \sigma_i$ for $i \neq j$, $\sigma_i^{m_i} = \operatorname{Id}_{\mathfrak{g}}$, Γ -grading of \mathfrak{g} by joint eigenspaces $\mathfrak{g}_{\bar{p}}$: $\mathfrak{g} = \bigoplus_{\bar{p} \in \Gamma} \mathfrak{g}_{\bar{p}}$

$$M(X,\mathfrak{g})^{\Gamma} = \bigoplus_{p \in \mathbb{Z}^n} \mathfrak{g}_{\bar{p}} \otimes kt^p$$
 twisted multiloop algebra

n = 1, g simple Lie: \rightsquigarrow affine Kac-Moody Lie algebras n arbitrary, g simple Lie: \rightsquigarrow toroidal Lie algebras

(日) (周) (三) (三)

Example: generalized Onsager algebra

$$\Gamma = \{1, \sigma\}, \quad A = k[t^{\pm 1}], \quad X = k^{\times}, \quad \mathfrak{g} = \mathsf{simple} \,\, \mathsf{Lie} \,\, \mathsf{algebra}$$

•
$$\Gamma$$
 acts on A by $\sigma \cdot t = t^{-1}$, on X by $\sigma \cdot x = x^{-1}$

 $\bullet~\Gamma$ acts on $\mathfrak g$ by any involution

When Γ acts on Lie algebra \mathfrak{g} by the Chevalley involution, we write

$$\mathcal{O}(\mathfrak{g}) = M(X,\mathfrak{g})^{\Gamma}$$

Remarks

If k = C, O(sl₂) is isomorphic to the Onsager algebra (Roan 1991)
 Key ingredient in Onsager's original solution of the 2D Ising model

• For $k = \mathbb{C}$, $\mathcal{O}(\mathfrak{sl}_n)$ was studied by Uglov and Ivanov (1996)

Evaluation maps

$$\mathfrak{M} = M(X, \mathfrak{g})^{\Gamma} = (\mathfrak{g} \otimes A)^{\Gamma}$$

$$x \in X, \ \Gamma_{x} = \{\gamma \in \Gamma : \gamma \cdot x = x\}$$

$$\mathfrak{g}^{x} = \{u \in \mathfrak{g} : \gamma \cdot u = u, \ \forall \gamma \in \Gamma_{x}\} < \mathfrak{g}$$
Important: $\alpha \in \mathfrak{M} \implies \alpha(x) \in \mathfrak{g}^{x}$
since $\alpha(x) = \alpha(\gamma \cdot x) = \gamma \cdot \alpha(x)$ for all $\gamma \in \Gamma_{x}$.

Definition (Evaluation at $x \in X$)

$$\operatorname{ev}_{x}:\mathfrak{M} \to \mathfrak{g}^{x}, \quad \alpha \mapsto \alpha(x)$$

(For $\mathfrak{M} = (\mathfrak{g} \otimes A)^{\Gamma}$: $x \leftrightarrow \mathfrak{m}$ maximal ideal of $A, A \rightarrow A/\mathfrak{m} \cong k, a \mapsto \overline{a}$ then $ev_x(\sum_i u_i \otimes a_i) = \sum_i u_i \overline{a}_i)$

Erhard Neher (Ottawa)

イロト 不得下 イヨト イヨト 二日

Ideals in $\mathfrak{M}(\mathfrak{g} \text{ arbitrary algebra})$

Proposition

Assume $\mathfrak{K} \triangleleft \mathfrak{M} = M(X, \mathfrak{g})^{\Gamma}$ and $\mathfrak{M}/\mathfrak{K}$ simple and finite-dimensional. Then exists $x \in X$ such that

Structure of all \Re and $\mathfrak{M}/\mathfrak{K}$:

Lau 2008 (multiloop), Elduque 2007 (Onsager)

Associative algebras

Corollary

 \mathfrak{g} associative, $\rho : \mathfrak{M} \to \operatorname{End}_{\kappa}(V)$ finite-dimensional irreducible representation. Then there exists $x \in X$ and a $\rho_x : \mathfrak{g}^x \to \operatorname{End}_k(V)$ such that $\rho = \rho_x \circ \operatorname{ev}_x :$

$$\mathfrak{M} \xrightarrow{\operatorname{ev}_{x}} \mathfrak{g}^{x} \xrightarrow{\rho_{x}} \operatorname{End}_{k}(V)$$

3

通 ト イヨ ト イヨト

Small representations

From now on: \mathfrak{g} is a Lie algebra, hence so is $\mathfrak{M} = M(X, \mathfrak{g})^{\Gamma}$.

Small representation = irreducible finite-dimensional representation

Example: Very small representations

Every 1-dimensional representation of a Lie algebra L is small.

Construction:

To $\lambda \in L^*$, $\lambda([L, L]) = 0$ we associate the rep ρ_{λ} , $\rho_{\lambda}(I)(s) = \lambda(I)s$ for $s \in k$.

$$(L/[L, L])^* \cong \{1 \text{-dim rep}\}, \quad \lambda \mapsto \rho_\lambda$$

 $\lambda = \mu \iff \rho_\lambda \cong \rho_\mu$

- 4 @ > 4 @ > 4 @ >

Evaluations representations

Recall: small = irreducible finite-dimensional

Definition (Evaluation representation)

A (small) evaluation representation of $\mathfrak{M} = M(X, \mathfrak{g})^{\Gamma}$ is a representation ρ for which there exist

1 $\mathbf{x} \subset X$ finite, $\Gamma \cdot x_1 \cap \Gamma \cdot x_2 = \emptyset$ if $x_i \in \mathbf{x}$, $x_1 \neq x_2$,

② $\rho_x : \mathfrak{g}^x \mapsto \mathfrak{gl}(V_x)$ (small) representation for every $x \in \mathbf{x}$ such that $\rho = (\bigotimes_{x \in \mathbf{x}} \rho_x) \circ ev_x$:

$$\mathfrak{M} \xrightarrow{\operatorname{ev}_{\mathsf{x}}} \oplus_{x \in \mathsf{x}} \mathfrak{g}^x \xrightarrow{\otimes \rho_x} \otimes_{x \in \mathsf{x}} \mathfrak{gl}_k(V_x).$$

where $ev_{\mathbf{x}}(\alpha) = (\alpha(\mathbf{x}))_{\mathbf{x} \in \mathbf{x}}$

Lemma: A small evaluation rep is a small rep

Erhard Neher (Ottawa)

- To x ∈ x we associate a rep of g^x instead of g. A rep of g^x does in general not extend to a rep of g, so we get more reps.
- If all g^x = g, e.g. Γ acts freely on X (multiloop case), then we get the usual definition.
- The small reps $\rho_{\rm X}$ need not be faithful

WHY the more general concept? We will get a more uniform description! Recall small= finite-dimensional irreducible

Theorem (N.-Savage-Senesi)

The small representations of $\mathfrak M$ are

 $(1\text{-}dim. rep) \otimes (small evaluation rep)$

Proof: (1) The small rep of any Lie algebra L are (1-dim. rep) $\otimes \rho_s$ where ρ_s has $L/\operatorname{Ker}(\rho_s)$ finite-dimensional semisimple.

(2) Prop. implies for $L = \mathfrak{M}$: ρ_s is evaluation rep

周 ト イ ヨ ト イ ヨ

Isomorphism classes

- $\mathcal{S} = \text{isomorphism classes of small reps}$
- \mathcal{R}_x = isomorphism classes of small reps of \mathfrak{g}^x , $x \in X$,
- $\mathcal{R} = \bigsqcup_{x \in X} \mathcal{R}_x$, Γ acts on \mathcal{R} by $\gamma \cdot [\rho_x] = [\rho_x \circ \gamma^{-1}] \in \mathcal{R}_{\gamma \cdot x}$ for $[\rho_x] \in \mathcal{R}_x$
- \mathcal{F} = equivariant functions $\psi: X \to \mathcal{R}$, $\psi(x) \in \mathcal{R}_x$, $\psi(x) = 0$ for almost all $x \in X$

Define

$$\mathcal{F} \to \mathcal{S}, \quad [\psi] \to [\mathsf{ev}_{\psi}]$$

where to ψ we associate

- $\mathbf{x} \subset \mathcal{F}$ by supp $(\psi) = \{x \in X : \psi(x) \neq 0\} = \Gamma \cdot \mathbf{x}, \ \Gamma \cdot x_1 \cap \Gamma \cdot x_2 = \emptyset$ if $x_i \in X$, $x_1 \neq x_2$,
- then choose $\psi(x) = [\rho_x]$ for $x \in \mathbf{x}$, and define

$$\mathsf{ev}_{\psi} = \big(\bigotimes_{\mathsf{x}\in\mathsf{x}}\rho_{\mathsf{x}}\big) \circ \mathsf{ev}_{\mathsf{x}}$$

Theorem (N-Savage-Senesi) For $\mathfrak{M} = M(X, \mathfrak{g})^{\Gamma}$: $(\mathfrak{M}/[\mathfrak{M}, \mathfrak{M}])^* \times \mathcal{F} \to \mathcal{S}, \quad (\lambda, [\psi]) \to [\rho_{\lambda} \otimes ev_{\psi}]$ is surjective, and injective on each factor. In particular: $\mathfrak{M} = [\mathfrak{M}, \mathfrak{M}] \implies \mathcal{F} \cong \mathcal{S}$

Erhard Neher (Ottawa)

Equivariant map algebras

December 2009 18 / 33

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

When are all small reps evaluation reps, i.e., $\mathcal{F} \cong \mathcal{S}$?

Recall: small = $(\mathfrak{M}/[\mathfrak{M},\mathfrak{M}])^*\otimes$ eval rep. Sufficient condition: $\mathfrak{M} = [\mathfrak{M},\mathfrak{M}]$.

Example (Γ trivial, \mathfrak{g} perfect)

(since then $\mathfrak{M} = \mathfrak{g} \otimes A$ and $[\mathfrak{M}, \mathfrak{M}] = [\mathfrak{g}, \mathfrak{g}] \otimes A$)

Special case: g semisimple

Chari 1986, $A = k[t^{\pm 1}]$ (untwisted loop algebra)

Feigin-Loktev 2004, A arbitrary

Chari-Fourier-Khandi, A arbitrary (preprint 2009)

Example (Multiloop algebra)

Recall: Γ abelian, $A = k[t_1^{\pm 1}, \dots, t_n^{\pm 1}], X = (k^{\times})^n, \mathfrak{g}$ perfect,

$$\mathfrak{M} = \bigoplus_{p \in \mathbb{Z}^n} \mathfrak{g}_{\overline{p}} \otimes kt^p.$$

Fact (Allison-Berman-Pianzola): \mathfrak{M} is perfect.

Corollary

If \mathfrak{M} is a (twisted) multiloop algebra, then all small representations are evaluation representations: $\mathcal{F} \cong S$.

Remarks

- recovers results of Chari-Pressley (for loop algebras), Rao, and Batra, Lau (multiloop algebras).
- ② Action of Γ on X is free, so g^x = g for all x ∈ X, so the more general notion of evaluation rep does not play a role.

< /i>
< /i>
< /i>
< /i>
< /i>

When are all small reps evaluation reps $(\mathcal{F} \cong \mathcal{S})$?

Obvious answer:

Since small reps are (1-dim rep) \otimes (eval rep) it suffices to know if there are one-dimensional reps which are not evaluation reps.

The critical points are

Definition

$$\tilde{X} = \{x \in X : \mathfrak{g}^x \neq [\mathfrak{g}^x, \mathfrak{g}^x]\}$$

Recall: $\mathfrak{g}^{x} = [\mathfrak{g}^{x}, \mathfrak{g}^{x}] \iff$ all one-dimensional reps of \mathfrak{g}^{x} are trivial. Thus:

 \tilde{X} is precisely the set of points where we can place nontrivial one-dimensional evaluation representations.

イロト 不得 トイヨト イヨト 二日

New question

When can non-trivial 1-dimensional representations be realized as evaluation representations?

Use our more general definition of an evaluation representation!

Let \mathbf{x} be a finite subset of X, consider the commutative diagram:

Proposition

If $|\tilde{X}| < \infty$, choose **x** such that $\tilde{X} = \Gamma \cdot \mathbf{x}$. Then all small reps are eval reps if and only if ker f = 0. This is true if and only if

$$[\mathfrak{M},\mathfrak{M}] = \{ \alpha \in \mathfrak{M} \mid \alpha(x) = [\mathfrak{g}^x, \mathfrak{g}^x] \; \forall \; x \in X \}.$$

Application: generalized Onsager algebra again

Recall

$$\Gamma = \{1, \sigma\}, \quad X = k^{\times}, \quad \mathfrak{g} = \text{simple Lie algebra}$$

•
$$\Gamma$$
 acts on X by $\sigma \cdot x = x^{-1}$

• Γ acts on \mathfrak{g} by any involution

Corollary

For Γ , X, g as above, all small reps are evaluation reps.

Benkart-Lau

- There are two types of points of $X = k^{\times}$:

 - $\blacktriangleright x \notin \{\pm 1\} \implies \mathsf{\Gamma}_x = \{1\}, \ \mathfrak{g}^x = \mathfrak{g}$
- $\bullet \ \mathfrak{g}^{\Gamma}$ can be semisimple or have a one-dimensional center
- \bullet When \mathfrak{g}^{Γ} is semisimple, \mathfrak{M} is perfect: Done!
- When \mathfrak{g}^{Γ} has a one-dimensional center: we can place (nontrivial) one-dim reps of \mathfrak{g}^{Γ} at the points ± 1
- the generalized Onsager algebra is not perfect
- but the map f of the Prop. is bijective! Done!
- Note: under our more general definition of evaluation rep, all small reps are evaluation reps
- under classical notion of evaluation rep, there are small reps which are not evaluation reps

Moral: The more general definition of evaluation rep allows for a more uniform classification.

Erhard Neher (Ottawa)

Special case: Onsager algebra

• When $k = \mathbb{C}$ and Γ acts on $\mathfrak{g} = \mathfrak{sl}_2$ by the Chevalley involution, then

$$\mathfrak{O}(\mathfrak{sl}_2) \stackrel{\mathsf{def}}{=} M(X, \mathfrak{sl}_2)^{\Gamma}$$

is the Onsager algebra

- $\mathfrak{g}^{\{\pm 1\}}$ is one-dimensional abelian and $\mathfrak{O}(\mathfrak{sl}_2)$ is not perfect.
- Small reps of $O(\mathfrak{sl}_2)$ were classified previously (Date-Roan 2000)
 - classical definition of evaluation rep was used
 - not all small reps were evaluation reps
 - this necessitated the introduction of the type of a representation

Note: For the other cases, the classification seems to be new.

When are all small reps evaluation reps?

Case $\tilde{X} = \{x \in X : \mathfrak{g}^x \neq [\mathfrak{g}^x, \mathfrak{g}^x]\}$ finite.

Recall Prop: Small reps = eval reps iff $[\mathfrak{M}, \mathfrak{M}] = \mathfrak{M}^d = \{ \alpha \in \mathfrak{M} : \alpha(x) \in [\mathfrak{g}^x, \mathfrak{g}^x] \ \forall x \in \tilde{X} \}$

Example $(|\tilde{X}| < \infty$, not all small reps are evaluation reps)

$$\Gamma = \{1, \sigma\}, \quad \mathfrak{g} = \mathfrak{sl}_2(k), \quad X = \text{cuspidal cubic curve}$$

- Γ acts on g by Chevalley involution
- $X = Z(x^2 y^3) = \{(x, y) \mid x^2 = y^3\} \subset k^2, A = k[x, y]/(x^2 y^3),$
- Γ acts on k^2 by $\sigma \cdot (x, y) = (-x, y)$, fixes $x^2 y^3$, hence induces an action of Γ on X.
- Only fixed point is the origin.
- Thus $ilde{X} = \{0\}$ and so $| ilde{X}| < \infty$
- But $\mathfrak{M}^d/[\mathfrak{M},\mathfrak{M}] \cong yk[y]/(y^3) \neq 0$

Thus $[\mathfrak{M},\mathfrak{M}] \subsetneq \mathfrak{M}^d$ and so \mathfrak{M} has small reps that are not eval reps.

Note: X has a singularity at 0.

When are all small rep evaluation reps?

Case
$$ilde{X} = \{x \in X: \mathfrak{g}^x
eq [\mathfrak{g}^x, \mathfrak{g}^x]\}$$
 infinite

Proposition (N-Savage-Senesi 2009)

If $|\tilde{X}| = \infty$, then $\mathfrak{M} = M(X, \mathfrak{g})^{\Gamma}$ has one-dimensional representations that are not evaluation representations.

(For X a scheme suppose X Noetherian)

Example (\tilde{X} infinite)

$$\Gamma = \{1, \sigma\}, \quad A = k[t_1, t_2], \quad X = k^2, \quad \mathfrak{g} = \mathfrak{sl}_2(k)$$

•
$$\sigma \cdot (x_1, x_2) = (x_1, -x_2), \ (x_1, x_2) \in k^2$$

 $\bullet~\sigma$ acts as Chevalley involution on $\mathfrak g$

Then

•
$$x = (x_1, x_2) \in k^2, x_2 \neq 0 \implies \Gamma_x = \{1\} \implies \mathfrak{g}^x = \mathfrak{g}$$

• $x = (x_1, 0) \in k^2 \implies \Gamma_x = \Gamma \implies \mathfrak{g}^x \cong k \text{ (abelian)}$

Thus

$$ilde{X} = \{(x_1,0) \mid x_1 \in k\} \quad \text{and so} \quad | ilde{X}| = \infty.$$

Therefore \mathfrak{M} has one-dimensional reps that are not eval reps.

3

(日) (同) (三) (三)

A nonabelian example (Γ nonabelian)

Example (Γ nonabelian)

$$\mathsf{\Gamma}=\mathit{S}_3,\quad X=\mathbb{P}^1\backslash\{0,1,\infty\},\quad A=k[t^{\pm 1},(t-1)^{-1}],\quad \mathfrak{g}=\mathfrak{so}_8\quad (\text{type }\mathrm{D}_4)$$

- symmetry group of Dynkin diagram of \mathfrak{g} is S_3
- $\bullet~\Gamma$ acts on $\mathfrak g$ by diagram automorphisms
- for any permutation of the set $\{0,1,\infty\},$ $\exists !$ homography of \mathbb{P}^1 inducing that permutation
- so Γ acts naturally on X

The corresponding equivariant map algebra $M(X, \mathfrak{g})^{\Gamma}$ is perfect. Hence $\mathcal{F} \cong \mathcal{S}$

A nonabelian example

Points with nontrivial stabilizer:

$$\begin{tabular}{|c|c|c|c|c|} \hline x & Γ_x & Type of \mathfrak{g}^x \\ \hline -1 & \{\mathsf{Id},(0\,\infty)\}\cong\mathbb{Z}_2 & B_3 \\ \hline 2 & \{\mathsf{Id},(1\,\infty)\}\cong\mathbb{Z}_2 & B_3 \\ \hline \frac{1}{2} & \{\mathsf{Id},(0\,1)\}\cong\mathbb{Z}_2 & B_3 \\ e^{\pm\pi i/3} & \{\mathsf{Id},(0\,1\,\infty),(0\,\infty\,1)\}\cong\mathbb{Z}_3 & G_2 \\ \hline \end{tabular}$$

The sets

$$\left\{-1,2,\frac{1}{2}\right\} \quad \text{and} \quad \left\{e^{\pi i/3},e^{-\pi i/3}\right\}$$

are **Γ**-orbits.

So elements of ${\mathcal F}$ can assign

- \bullet irreps of type B_3 to the 3-element orbit
- irreps of type G_2 to the 2-element orbit
- irreps of type D_4 to the other points (6-element orbits)

A nonabelian example

æ

イロト イヨト イヨト イヨト

Conclusion

- Equivariant map algebras provide a framework for many interesting examples
- Interplay between algebra and geometry
- Many open problems